1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
use std::marker::PhantomData;
use std::mem;
use std::ptr;
use std::sync::atomic::{self, Ordering};
use super::{Owned, Shared, Guard};
/// Like `std::sync::atomic::AtomicPtr`.
///
/// Provides atomic access to a (nullable) pointer of type `T`, interfacing with
/// the `Owned` and `Shared` types.
#[derive(Debug)]
pub struct Atomic<T> {
ptr: atomic::AtomicPtr<T>,
_marker: PhantomData<*const ()>,
}
unsafe impl<T: Sync> Send for Atomic<T> {}
unsafe impl<T: Sync> Sync for Atomic<T> {}
fn opt_shared_into_raw<T>(val: Option<Shared<T>>) -> *mut T {
val.map(|p| p.as_raw()).unwrap_or(ptr::null_mut())
}
fn opt_owned_as_raw<T>(val: &Option<Owned<T>>) -> *mut T {
val.as_ref().map(Owned::as_raw).unwrap_or(ptr::null_mut())
}
fn opt_owned_into_raw<T>(val: Option<Owned<T>>) -> *mut T {
let ptr = val.as_ref().map(Owned::as_raw).unwrap_or(ptr::null_mut());
mem::forget(val);
ptr
}
impl<T> Atomic<T> {
/// Create a new, null atomic pointer.
#[cfg(feature = "nightly")]
pub const fn null() -> Atomic<T> {
Atomic {
ptr: atomic::AtomicPtr::new(0 as *mut _),
_marker: PhantomData
}
}
#[cfg(not(feature = "nightly"))]
pub fn null() -> Atomic<T> {
Atomic {
ptr: atomic::AtomicPtr::new(0 as *mut _),
_marker: PhantomData
}
}
/// Create a new atomic pointer
pub fn new(data: T) -> Atomic<T> {
Atomic {
ptr: atomic::AtomicPtr::new(Box::into_raw(Box::new(data))),
_marker: PhantomData
}
}
/// Do an atomic load with the given memory ordering.
///
/// In order to perform the load, we must pass in a borrow of a
/// `Guard`. This is a way of guaranteeing that the thread has pinned the
/// epoch for the entire lifetime `'a`. In return, you get an optional
/// `Shared` pointer back (`None` if the `Atomic` is currently null), with
/// lifetime tied to the guard.
///
/// # Panics
///
/// Panics if `ord` is `Release` or `AcqRel`.
pub fn load<'a>(&self, ord: Ordering, _: &'a Guard) -> Option<Shared<'a, T>> {
unsafe { Shared::from_raw(self.ptr.load(ord)) }
}
/// Do an atomic store with the given memory ordering.
///
/// Transfers ownership of the given `Owned` pointer, if any. Since no
/// lifetime information is acquired, no `Guard` value is needed.
///
/// # Panics
///
/// Panics if `ord` is `Acquire` or `AcqRel`.
pub fn store(&self, val: Option<Owned<T>>, ord: Ordering) {
self.ptr.store(opt_owned_into_raw(val), ord)
}
/// Do an atomic store with the given memory ordering, immediately yielding
/// a shared reference to the pointer that was stored.
///
/// Transfers ownership of the given `Owned` pointer, yielding a `Shared`
/// reference to it. Since the reference is valid only for the curent epoch,
/// it's lifetime is tied to a `Guard` value.
///
/// # Panics
///
/// Panics if `ord` is `Acquire` or `AcqRel`.
pub fn store_and_ref<'a>(&self, val: Owned<T>, ord: Ordering, _: &'a Guard)
-> Shared<'a, T>
{
unsafe {
let shared = Shared::from_owned(val);
self.store_shared(Some(shared), ord);
shared
}
}
/// Do an atomic store of a `Shared` pointer with the given memory ordering.
///
/// This operation does not require a guard, because it does not yield any
/// new information about the lifetime of a pointer.
///
/// # Panics
///
/// Panics if `ord` is `Acquire` or `AcqRel`.
pub fn store_shared(&self, val: Option<Shared<T>>, ord: Ordering) {
self.ptr.store(opt_shared_into_raw(val), ord)
}
/// Do a compare-and-set from a `Shared` to an `Owned` pointer with the
/// given memory ordering.
///
/// As with `store`, this operation does not require a guard; it produces no new
/// lifetime information. The `Result` indicates whether the CAS succeeded; if
/// not, ownership of the `new` pointer is returned to the caller.
pub fn cas(&self, old: Option<Shared<T>>, new: Option<Owned<T>>, ord: Ordering)
-> Result<(), Option<Owned<T>>>
{
if self.ptr.compare_and_swap(opt_shared_into_raw(old),
opt_owned_as_raw(&new),
ord) == opt_shared_into_raw(old)
{
mem::forget(new);
Ok(())
} else {
Err(new)
}
}
/// Do a compare-and-set from a `Shared` to an `Owned` pointer with the
/// given memory ordering, immediatley acquiring a new `Shared` reference to
/// the previously-owned pointer if successful.
///
/// This operation is analogous to `store_and_ref`.
pub fn cas_and_ref<'a>(&self, old: Option<Shared<T>>, new: Owned<T>,
ord: Ordering, _: &'a Guard)
-> Result<Shared<'a, T>, Owned<T>>
{
if self.ptr.compare_and_swap(opt_shared_into_raw(old), new.as_raw(), ord)
== opt_shared_into_raw(old)
{
Ok(unsafe { Shared::from_owned(new) })
} else {
Err(new)
}
}
/// Do a compare-and-set from a `Shared` to another `Shared` pointer with
/// the given memory ordering.
///
/// The boolean return value is `true` when the CAS is successful.
pub fn cas_shared(&self, old: Option<Shared<T>>, new: Option<Shared<T>>, ord: Ordering)
-> bool
{
self.ptr.compare_and_swap(opt_shared_into_raw(old),
opt_shared_into_raw(new),
ord) == opt_shared_into_raw(old)
}
/// Do an atomic swap with an `Owned` pointer with the given memory ordering.
pub fn swap<'a>(&self, new: Option<Owned<T>>, ord: Ordering, _: &'a Guard)
-> Option<Shared<'a, T>> {
unsafe { Shared::from_raw(self.ptr.swap(opt_owned_into_raw(new), ord)) }
}
/// Do an atomic swap with a `Shared` pointer with the given memory ordering.
pub fn swap_shared<'a>(&self, new: Option<Shared<T>>, ord: Ordering, _: &'a Guard)
-> Option<Shared<'a, T>> {
unsafe { Shared::from_raw(self.ptr.swap(opt_shared_into_raw(new), ord)) }
}
}