1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
//! Counts kmers.
//! Each line is a kmer with two columns separated by tab: kmer, count
//! Optional columns starting with column 3 are the reads that start with that kmer
//! with a delimiter of `~`
//! # Examples
//! Counting kmers of 15. Using `--paired-end` will not matter here.
//!
//! ```bash
//! cat testdata/four_reads.fastq | fasten_kmer -k 15 > 15mers.tsv
//! ```
//!
//! Counting kmers and retaining reads
//!
//! ```bash
//! cat testdata/four_reads.fastq | \
//! fasten_kmer -k 15 --remember-reads > 15mers.tsv
//! ```
//!
//! # Example output
//!
//! First two lines of a kmer output where they contain reads
//!
//! ```text
//! TAGTGAATCCTTTTTCATAAA 39 @M03235:53:000000000-AHLTD:1:1113:23312:4764 1:N:0:6~TAGTGAATCCTTTTTCATAAAATCTTGCTTCAAAATTGCTAAGAGTTTATAAGCAAGAAGTGTTCCAAGTTTGCAAGATGAGGTGAGATTGTGTAAATAAGCTACAAAATTTTTAATTTAAGCCCTACAAGCTCTTAAATATCAAAAGCATTTTCTAAAATATGCAAAAATGTAAGCAAAATGTTTAAAGGAAAGTCGTGAAAAATGCTGAAAAAACTTTAAGAAGGAATTTTTTTACCCTAATCTTACTT~+~>AAA>DDFFFFFGGGGGGGGGGHHHHHHHHHHHHHHHHHHHHGHHGHHHHHHHHFHHHHHGGHHHHHHHGHHHHHHGHHHHHHCHGHHFHHHHGHHHHHHHHHHHGHHHGHHHHHHHHHHHHHHHGHHHGHHFHGHFHHHHHHGHHHFHHHHHHHGHHHHHHHHGHHHHHHHHGHHFHHHHHHHHHHHHHHHGHGFHAFDHGHFHFHHGHGHHFHGFFGGHHHHHFGHFHB=0D::GCGHBHHFBCGGGGG~@M03235:53:000000000-AHLTD:1:1113:23312:4764 2:N:0:6~TCGTAGTAGTATTTCCTAAAATAAGGCAAACCATAGATGATAGACCCACAAAAAGAAAGTAAGATTAGGGTAAAAAAATTCCTTCTTAAAGTTTTTTCAGCATTTTTCACGACTTTCCTTTAAACATTTTGCTTACATTTTTGCATATTTTAGAAAATGCTTTTGATATTTAAGAGCTTGTAGGGCTTAAATTAAAAATTTTGTAGCTTATTTACACAATCTCACCTCATCTTGCAAACTTGGAACACTT~+~CCCCDCCFFFFFGGGGGGGGGGHHHHHHHHHGHHHHHHHHHHGHHHGHGGGHHHGGGHHHHFFHHFHHHFEGGHHHGGHHFHHHHHHHGHHFDGHGGFHHHHHHHHHHGHHGGGGGHHGGHHGHHHHHHHHHGHHHHHHHHHGGHHHHHHHHHHHHGHFFHHHHHGHGHHHFHFHHFHHHHHFBFFHHHEDHHHGFHHHHGHGHHDHBGGHHGHHFDGEHHHFFHHFHGHHHHGFC::CBFFBBFF/CFB
//! TATCAAGGCTGCTCAAATGAT 35 @M03235:53:000000000-AHLTD:1:1114:18962:2371 1:N:0:6~TATCAAGGCTGCTCAAATGATGGCTTTTGTTATGCTCCGCAAAAGCGTGAATTTAGAATTTTTAAAGAGGGTCAAATTTATAAAACTAGCCCTTATGAAACAATGCAAAGTGAAGAAGAGCAAATCGCCTTTTCTTTGAAAAATGAAAATTTAGCACTCATCTTGCTTAGTTTTTTTGGTTACGGACTTTTGCTTTCTCTTACGCCTTGCACCTTACCGATGATTCCTATTTTATCTTCACTTATCATAG~+~AABBA5FBAFFBGGGGGGGGGGHGHHHFHHHHHHHHHCGGGGGBHFFEE2FHHFHHHFGGHHHGHHHFHGGGHGHHHHGHHHHHHHHHHHHFHHHGHHHHFFHHHHHHHHHHGHHHCGGGH3FHEGDAFGGGGHHFGHFHHEHHHGHFFFHHGEHHHHGHHHFHFFHHHHDFHHGCFDGHEHFEGDCCHHHBBG0GFHFHHBGGF-G?BGGGCGCG//;.9.CBFB0BBGGGGBFFFF0;0FFGFGBF00~@M03235:53:000000000-AHLTD:1:1114:18962:2371 2:N:0:6~GATTAAAGAAAGTAAAAAGCTTTGTTTTTTAGAAGGTTTCGTGCCACCTTTTGCTATGATAAGTGAAGATAAAATAGGAATCATCGGTAAGGTGCAAGGCGTAAGAGAAAGCAAAAGTCCGTAACCAAAAAAACTAAGCAAGATGAGTGCTAAATTTTCATTTTTCAAAGAAAAGGCGATTTGCTCTTCTTCACTTTGCATTGTTTCATAAGGGCTAGTTTTATAAATTTGACCCTCTTTAAAAATTCTAA~+~CCCCCFFFFFFFGGGGGGGGGGHHFHHHGGHHGGHHGHHHGHGGHHHGHHHHHHHHHHHHGHHHHHHHHHHHHHHHHHHHHHHHHHGGGEGFGFHHFHGHGGGEHGHHHHHHGHHHHFHFE?GEGHHHHGGGGGGGHHHHGHHHHHHHFDFHHHHGFHFHHGHHGHHHHHHHHHH.A@EGGC0D0G0D0GDHFHHFCC00FGFHHHHHHHFHB;EFGGFGGBFGEFGGFFFFGCBFGGGGGGBFGGFGFFF
//! ```
//! # Usage
//! ```text
//! Usage: fasten_kmer [-h] [-n INT] [-p] [-v] [-k INT]
//! Options:
//! -h, --help Print this help menu.
//! -n, --numcpus INT Number of CPUs (default: 1)
//! -p, --paired-end The input reads are interleaved paired-end
//! -v, --verbose Print more status messages
//! -k, --kmer-length INT
//! The size of the kmer
//! -r, --revcomp Count kmers on the reverse complement strand too
//! -m, --remember-reads
//! Add reads to subsequent columns. Each read begins with
//! the kmer. Only lists reads in the forward direction.
//! ```
extern crate fasten;
extern crate statistical;
extern crate getopts;
use std::io::BufReader;
use std::io::BufRead;
use std::io::stdin;
use std::io::Stdin;
use fasten::fasten_base_options;
use fasten::fasten_base_options_matches;
use fasten::logmsg;
use std::collections::HashMap;
/// Glues together paired end reads internally and is a
/// character not expected in any read
const READ_SEPARATOR :char = '~';
#[test]
/// Let's count some kmers on homopolymers
fn test_kmer_counting_homopolymers () {
let k = 4;
// The first easy test is an AAAA kmer in a Ax10 homopolymer
let a_homopolymer = (0..10).map(|_| "A").collect::<String>();
let mut kmer = kmers_in_str(&a_homopolymer, k, false);
let obs_a_count = *kmer.entry(String::from("AAAA")).or_insert(0);
assert_eq!(obs_a_count, 7, "10-mer A yields seven 4-mers of A");
let obs_t_count = *kmer.entry(String::from("TTTT")).or_insert(0);
assert_eq!(obs_t_count, 0, "10-mer A yields zero 4-mers of T");
// Ok but what about revcom kmers
let mut kmer = kmers_in_str(&a_homopolymer, k, true );
let obs_a_count = *kmer.entry(String::from("AAAA")).or_insert(0);
assert_eq!(obs_a_count, 7, "10-mer A yields seven 4-mers of A");
let obs_t_count = *kmer.entry(String::from("TTTT")).or_insert(0);
assert_eq!(obs_t_count, 7, "10-mer A yields seven 4-mers of T");
}
#[test]
/// Let's count some kmers on something more complicated
fn test_kmer_counting_4mers () {
let k = 4;
// This is the first seq of the test file four_reads.fastq
let seq = "AAAGTGCTCTTAACTTGTCCCGCTCCACATCAGCGCGACATCAATCGACATTAAACCGAGTATCTTGTCAGCCTGGGGTGACGATGCGTCCCATTAAAGT";
let my_kmer = "TTAA";
let mut kmer = kmers_in_str(&seq, k, false);
let obs = *kmer.entry(String::from(my_kmer)).or_insert(0);
assert_eq!(obs, 3, "Found {} kmer in seq {} times. Seq is \n{}", my_kmer, obs, seq);
// But also test for revcom kmers
let mut kmer = kmers_in_str(&seq, k, true );
let obs = *kmer.entry(String::from(my_kmer)).or_insert(0);
assert_eq!(obs, 6, "Found {} kmer in seq {} times. Seq is \n{}", my_kmer, obs, seq);
// one more kmer
let my_kmer = "TGTC";
let mut kmer = kmers_in_str(&seq, k, false);
let obs = *kmer.entry(String::from(my_kmer)).or_insert(0);
assert_eq!(obs, 2, "Found {} kmer in seq {} times. Seq is \n{}", my_kmer, obs, seq);
// and revcom
let mut kmer = kmers_in_str(&seq, k, true );
let obs = *kmer.entry(String::from(my_kmer)).or_insert(0);
assert_eq!(obs, 4, "Found {} kmer in seq {} times. Seq is \n{}", my_kmer, obs, seq);
}
fn main(){
let mut opts = fasten_base_options();
// script-specific options
let default_k:usize = 21;
opts.optopt("k","kmer-length",&format!("The size of the kmer (default: {})",default_k),"INT");
opts.optflag("r","revcomp", "Count kmers on the reverse complement strand too");
opts.optflag("m","remember-reads", "Add reads to subsequent columns. Each read begins with the kmer. Only lists reads in the forward direction.");
let matches = fasten_base_options_matches("Counts kmers.", opts);
//if matches.opt_present("paired-end") {
// logmsg("WARNING: --paired-end is not utilized in this script");
//}
let kmer_length:usize={
if matches.opt_present("kmer-length") {
matches.opt_str("kmer-length")
.expect("ERROR: could not understand parameter --kmer-length")
.parse()
.expect("ERROR: --kmer-length is not an INT")
} else {
default_k
}
};
let stdin = stdin();
count_kmers(stdin, kmer_length, matches.opt_present("revcomp"), matches.opt_present("remember-reads"), matches.opt_present("paired-end"));
}
/// Read fastq from stdin and count kmers
fn count_kmers (stdin:Stdin, kmer_length:usize, revcomp:bool, remember_reads:bool, paired_end:bool) {
// keep track of which sequences start with which kmers
let mut kmer_to_seqs :HashMap<String, Vec<String>> = HashMap::new();
// read the file
let my_buffer=BufReader::new(stdin);
let mut buffer_iter = my_buffer.lines();
let mut kmer_hash :HashMap<String,u32> = HashMap::new();
while let Some(id_opt) = buffer_iter.next() {
let seq = buffer_iter.next().expect("ERROR reading a sequence line")
.expect("ERROR reading a sequence line");
// burn the plus line
let plus_opt = buffer_iter.next();
// burn the qual line
let qual_opt = buffer_iter.next();
// get all the kmers in this entry
let entry_kmers = kmers_in_str(&seq, kmer_length, revcomp);
// merge the entry kmers
for (key, value) in entry_kmers.iter() {
let kmer_count = kmer_hash.entry(String::from(key)).
or_insert(0);
*kmer_count += value;
}
// If this is paired end and if we're saving the second pair's
// read, then reserve a declaired variable here for the string.
let mut r2_read_string :String = String::new();
if paired_end {
let id2 = buffer_iter.next().expect("reading the ID2 line")
.expect("reading the ID2 line");
let seq2 = buffer_iter.next().expect("ERROR reading a sequence line, second in pair")
.expect("ERROR reading a sequence line, second in pair");
// burn the plus line
let plus2 = buffer_iter.next().expect("reading the plus2 line")
.expect("reading the plus2 line");
// burn the qual line
let qual2 = buffer_iter.next().expect("reading the qual2 line")
.expect("reading the qual2 line");
// get all the kmers in this entry
let entry_kmers2 = kmers_in_str(&seq2, kmer_length, revcomp);
// merge the entry kmers
for (key, value) in entry_kmers2.iter() {
let kmer_count = kmer_hash.entry(String::from(key)).
or_insert(0);
*kmer_count += value;
}
r2_read_string = vec![id2,seq2,plus2,qual2].join(&READ_SEPARATOR.to_string());
}
// Remember the read that initiated this
if remember_reads {
let init_kmer = String::from(&seq[0..kmer_length]);
let init_kmer_vec = kmer_to_seqs.entry(init_kmer).or_insert(vec![]);
// get the formatted entry
let id = id_opt.expect("reading the ID line");
let plus = plus_opt.expect("reading the plus line")
.expect("reading the plus line");
let qual = qual_opt.expect("reading the qual line")
.expect("reading the qual line");
if paired_end {
init_kmer_vec.push(
vec![id, seq, plus, qual, r2_read_string].join(&READ_SEPARATOR.to_string())
);
}
else {
init_kmer_vec.push(
vec![id, seq, plus, qual].join(&READ_SEPARATOR.to_string())
);
}
}
}
// TODO in the future: somehow efficiently remove reverse
// complement kmers before printing because it is basically
// double the information needed.
for (kmer,count) in kmer_hash.iter() {
let mut line :String = format!("{}\t{}", kmer, count);
if remember_reads {
let reads_vec = kmer_to_seqs.entry(kmer.to_string()).or_insert(vec![]);
for read in reads_vec {
line.push_str("\t");
line.push_str(read);
}
}
println!("{}", line);
}
}
/// Read a str of nucleotides and count kmers.
/// If `should_revcomp` is true, then will also count kmers on the opposite strand.
fn kmers_in_str (seq:&str, kmer_length:usize, should_revcomp:bool) -> HashMap<String,u32> {
// save the kmers in this local hash
let mut kmer_hash :HashMap<String,u32> = HashMap::new();
// how many kmers we expect in this sliding window
let seq_len = seq.len();
// Don't count short sequences
if seq_len < kmer_length {
logmsg("WARNING: found a sequence less than k");
return kmer_hash;
}
let my_num_kmers = seq_len - kmer_length + 1;
for idx in 0..my_num_kmers {
// increment the kmer count by reference
let kmer_count = kmer_hash.entry(String::from(&seq[idx..kmer_length+idx])).
or_insert(0);
*kmer_count += 1;
}
// kmer count on the revcomp sequence too
if should_revcomp {
let revcomp = revcomp(&seq);
for idx in 0..my_num_kmers {
let kmer_count = kmer_hash.entry(String::from(&revcomp[idx..kmer_length+idx]))
.or_insert(0);
*kmer_count += 1;
}
}
return kmer_hash;
}
/// reverse-complement a dna sequence
// Thanks Henk for supplying these functions.
fn revcomp(dna: &str) -> String {
let mut rc_dna: String = String::with_capacity(dna.len());
for c in dna.chars().rev() {
rc_dna.push(switch_base(c))
}
rc_dna
}
/// Complementary nucleotide for ACTGUN, case insensitive
fn switch_base(c: char) -> char {
match c {
'a' => 't',
'c' => 'g',
't' => 'a',
'g' => 'c',
'u' => 'a',
'n' => 'n',
'A' => 'T',
'C' => 'G',
'T' => 'A',
'G' => 'C',
'U' => 'A',
'N' => 'N',
_ => 'N',
}
}