1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
use std::cell::Cell;
use std::ptr;
use std::sync::atomic::{AtomicPtr, AtomicUsize, Ordering, fence};

use alloc;
use consume::CONSUME;
use countedindex::{CountedIndex, Index, past, Transaction};
use maybe_acquire::{MAYBE_ACQUIRE, maybe_acquire_fence};
use memory::MemoryManager;

#[derive(Clone, Copy, PartialEq)]
enum ReaderState {
    Single,
    Multi,
}

struct ReaderPos {
    pos_data: CountedIndex,
}

struct ReaderMeta {
    num_consumers: AtomicUsize,
}

#[derive(Clone)]
pub struct Reader {
    state: Cell<ReaderState>,
    pos: *const ReaderPos,
    meta: *const ReaderMeta,
}

/// This represents the reader attempt at loading a transaction
/// It behaves similarly to a Transaction but has logic for single/multi
/// readers
pub struct ReadAttempt<'a> {
    linked: Transaction<'a>,
    state: ReaderState,
}

/// This holds the set of readers currently active.
/// This struct is held out of line from the cursor so it's easy to atomically replace it
struct ReaderGroup {
    readers: Vec<*const ReaderPos>,
}

#[repr(C)]
pub struct ReadCursor {
    readers: AtomicPtr<ReaderGroup>,
    pub last_pos: Cell<usize>,
}

impl<'a> ReadAttempt<'a> {
    #[inline(always)]
    pub fn get(&self) -> (isize, usize) {
        self.linked.get()
    }

    #[inline(always)]
    pub fn commit_attempt(self, by: Index, ord: Ordering) -> Option<ReadAttempt<'a>> {
        match self.state {
            ReaderState::Single => {
                self.linked.commit_direct(by, ord);
                None
            }
            ReaderState::Multi => {
                match self.linked.commit(by, ord) {
                    Some(transaction) => {
                        Some(ReadAttempt {
                            linked: transaction,
                            state: ReaderState::Multi,
                        })
                    }
                    None => None,
                }
            }
        }
    }

    #[inline(always)]
    pub fn commit_direct(self, by: Index, ord: Ordering) {
        self.linked.commit_direct(by, ord);
    }
}

impl Reader {
    /// Could this be done in a more compiler-friendly way
    #[inline(always)]
    pub fn load_attempt(&self, ord: Ordering) -> ReadAttempt {
        if self.state.get() == ReaderState::Multi {
            if unsafe { (*self.meta).num_consumers.load(Ordering::Relaxed) } == 1 {
                fence(Ordering::Acquire);
                self.state.set(ReaderState::Single);
            }
        }
        unsafe {
            ReadAttempt {
                linked: (*self.pos).pos_data.load_transaction(ord),
                state: self.state.get(),
            }
        }
    }

    #[inline(always)]
    pub fn load_count(&self, ord: Ordering) -> usize {
        unsafe { (*self.pos).pos_data.load_count(ord) }
    }

    pub fn dup_consumer(&self) {
        unsafe {
            (*self.meta).num_consumers.fetch_add(1, Ordering::SeqCst);
        }
        self.state.set(ReaderState::Multi);
    }

    pub fn remove_consumer(&self) -> usize {
        unsafe { (*self.meta).num_consumers.fetch_sub(1, Ordering::SeqCst) }
    }

    #[inline(always)]
    pub fn get_consumers(&self) -> usize {
        unsafe { (*self.meta).num_consumers.load(Ordering::Relaxed) }
    }

    #[inline(always)]
    pub fn is_single(&self) -> bool {
        self.get_consumers() == 1
    }
}

impl ReaderGroup {
    pub fn new() -> ReaderGroup {
        ReaderGroup { readers: Vec::new() }
    }

    /// Only safe to call from a consumer of the queue!
    pub unsafe fn add_stream(&self, raw: usize, wrap: Index) -> (*mut ReaderGroup, Reader) {
        let new_meta = alloc::allocate(1);
        let new_group = alloc::allocate(1);
        let new_pos = alloc::allocate(1);
        ptr::write(new_pos,
                   ReaderPos { pos_data: CountedIndex::from_usize(raw, wrap) });
        ptr::write(new_meta, ReaderMeta { num_consumers: AtomicUsize::new(1) });
        let new_reader = Reader {
            state: Cell::new(ReaderState::Single),
            pos: new_pos,
            meta: new_meta as *const ReaderMeta,
        };
        let mut new_readers = self.readers.clone();
        new_readers.push(new_pos as *const ReaderPos);
        ptr::write(new_group, ReaderGroup { readers: new_readers });
        (new_group, new_reader)
    }

    pub unsafe fn remove_reader(&self, reader: *const ReaderPos) -> *mut ReaderGroup {
        let new_group = alloc::allocate(1);
        let mut new_readers = self.readers.clone();
        new_readers.retain(|pt| *pt != reader);
        ptr::write(new_group, ReaderGroup { readers: new_readers });
        new_group
    }

    pub fn get_max_diff(&self, cur_writer: usize) -> Option<Index> {
        let mut max_diff: usize = 0;
        unsafe {
            for reader_ptr in &self.readers {
                // If a reader has passed the writer during this function call
                // then what must have happened is that somebody else has completed this
                // written to the queue, and a reader has bypassed it. We should retry
                let rpos = (**reader_ptr).pos_data.load_count(MAYBE_ACQUIRE);
                let (diff, tofar) = past(cur_writer, rpos);
                if tofar {
                    return None;
                }
                max_diff = if diff > max_diff { diff } else { max_diff };
            }
        }
        maybe_acquire_fence();

        Some(max_diff as Index)
    }
}

impl ReadCursor {
    pub fn new(wrap: Index) -> (ReadCursor, Reader) {
        let rg = ReaderGroup::new();
        unsafe {
            let (real_group, reader) = rg.add_stream(0, wrap);
            (ReadCursor {
                 readers: AtomicPtr::new(real_group),
                 last_pos: Cell::new(0),
             },
             reader)
        }
    }

    pub fn get_max_diff(&self, cur_writer: usize) -> Option<Index> {
        loop {
            unsafe {
                let first_ptr = self.readers.load(CONSUME);
                let rg = &*first_ptr;
                let rval = rg.get_max_diff(cur_writer);
                // This check ensures that the pointer hasn't changed
                // We must first read the diff, *and then* check the pointer
                // for changes.
                //
                // We can also get away with having a writer change this during
                // the load as long as it doesn't finish the change since the
                // reader doing the change is pinned to the same spot. It's basically
                // like a seqlock where only the final check is needed and not the first
                // since the data remains valid throughout the write cycle
                //
                // We don't need another acquire fence here since the
                // relevant loads in get_max_diff are going to ordered
                // before all loads after the function exit, and also
                // ordered after the original pointer load
                let second_ptr = self.readers.load(Ordering::Relaxed);
                if second_ptr == first_ptr {
                    return rval;
                }
            }
        }
    }

    pub fn add_stream(&self, reader: &Reader, manager: &MemoryManager) -> Reader {
        let mut current_ptr = self.readers.load(CONSUME);
        loop {
            unsafe {
                let current_group = &*current_ptr;
                let raw = (*reader.pos).pos_data.load_raw(Ordering::Relaxed);
                let wrap = (*reader.pos).pos_data.wrap_at();
                let (new_group, new_reader) = current_group.add_stream(raw, wrap);
                fence(Ordering::SeqCst);
                match self.readers
                    .compare_exchange(current_ptr,
                                      new_group,
                                      Ordering::Relaxed,
                                      Ordering::Relaxed) {
                    Ok(_) => {
                        fence(Ordering::SeqCst);
                        manager.free(current_ptr, 1);
                        return new_reader;
                    }
                    Err(val) => {
                        current_ptr = val;
                        fence(Ordering::Acquire);
                        ptr::read(new_group);
                        alloc::deallocate(new_reader.meta as *mut ReaderMeta, 1);
                        alloc::deallocate(new_reader.pos as *mut ReaderPos, 1);
                        alloc::deallocate(new_group, 1);
                    }
                }
            }
        }
    }

    pub fn remove_reader(&self, reader: &Reader, mem: &MemoryManager) -> bool {
        let mut current_group = self.readers.load(CONSUME);
        loop {
            unsafe {
                let new_group = (*current_group).remove_reader(reader.pos);
                match self.readers
                    .compare_exchange(current_group,
                                      new_group,
                                      Ordering::SeqCst,
                                      Ordering::SeqCst) {
                    Ok(_) => {
                        fence(Ordering::SeqCst);
                        if (*current_group).readers.len() == 1 {
                            self.last_pos.set(reader.load_count(Ordering::Relaxed));
                        }
                        mem.free(current_group, 1);
                        mem.free(reader.pos as *mut ReaderPos, 1);
                        alloc::deallocate(reader.meta as *mut ReaderMeta, 1);
                        return self.has_readers();
                    }
                    Err(val) => {
                        current_group = val;
                        ptr::read(new_group);
                        alloc::deallocate(new_group, 1);
                    }
                }
            }
        }
    }

    pub fn has_readers(&self) -> bool {
        unsafe {
            let current_group = &*self.readers.load(CONSUME);
            current_group.readers.is_empty()
        }
    }
}