1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Generating numbers between two others.
// this is surprisingly complicated to be both generic & correct
use core::num::Wrapping as w;
use Rng;
use distributions::{Sample, IndependentSample};
/// Sample values uniformly between two bounds.
///
/// This gives a uniform distribution (assuming the RNG used to sample
/// it is itself uniform & the `SampleRange` implementation for the
/// given type is correct), even for edge cases like `low = 0u8`,
/// `high = 170u8`, for which a naive modulo operation would return
/// numbers less than 85 with double the probability to those greater
/// than 85.
///
/// Types should attempt to sample in `[low, high)`, i.e., not
/// including `high`, but this may be very difficult. All the
/// primitive integer types satisfy this property, and the float types
/// normally satisfy it, but rounding may mean `high` can occur.
///
/// # Example
///
/// ```rust
/// use rand::distributions::{IndependentSample, Range};
///
/// fn main() {
/// let between = Range::new(10, 10000);
/// let mut rng = rand::thread_rng();
/// let mut sum = 0;
/// for _ in 0..1000 {
/// sum += between.ind_sample(&mut rng);
/// }
/// println!("{}", sum);
/// }
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Range<X> {
low: X,
range: X,
accept_zone: X
}
impl<X: SampleRange + PartialOrd> Range<X> {
/// Create a new `Range` instance that samples uniformly from
/// `[low, high)`. Panics if `low >= high`.
pub fn new(low: X, high: X) -> Range<X> {
assert!(low < high, "Range::new called with `low >= high`");
SampleRange::construct_range(low, high)
}
}
impl<Sup: SampleRange> Sample<Sup> for Range<Sup> {
#[inline]
fn sample<R: Rng>(&mut self, rng: &mut R) -> Sup { self.ind_sample(rng) }
}
impl<Sup: SampleRange> IndependentSample<Sup> for Range<Sup> {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> Sup {
SampleRange::sample_range(self, rng)
}
}
/// The helper trait for types that have a sensible way to sample
/// uniformly between two values. This should not be used directly,
/// and is only to facilitate `Range`.
pub trait SampleRange : Sized {
/// Construct the `Range` object that `sample_range`
/// requires. This should not ever be called directly, only via
/// `Range::new`, which will check that `low < high`, so this
/// function doesn't have to repeat the check.
fn construct_range(low: Self, high: Self) -> Range<Self>;
/// Sample a value from the given `Range` with the given `Rng` as
/// a source of randomness.
fn sample_range<R: Rng>(r: &Range<Self>, rng: &mut R) -> Self;
}
macro_rules! integer_impl {
($ty:ty, $unsigned:ident) => {
impl SampleRange for $ty {
// we play free and fast with unsigned vs signed here
// (when $ty is signed), but that's fine, since the
// contract of this macro is for $ty and $unsigned to be
// "bit-equal", so casting between them is a no-op & a
// bijection.
#[inline]
fn construct_range(low: $ty, high: $ty) -> Range<$ty> {
let range = (w(high as $unsigned) - w(low as $unsigned)).0;
let unsigned_max: $unsigned = ::core::$unsigned::MAX;
// this is the largest number that fits into $unsigned
// that `range` divides evenly, so, if we've sampled
// `n` uniformly from this region, then `n % range` is
// uniform in [0, range)
let zone = unsigned_max - unsigned_max % range;
Range {
low: low,
range: range as $ty,
accept_zone: zone as $ty
}
}
#[inline]
fn sample_range<R: Rng>(r: &Range<$ty>, rng: &mut R) -> $ty {
loop {
// rejection sample
let v = rng.gen::<$unsigned>();
// until we find something that fits into the
// region which r.range evenly divides (this will
// be uniformly distributed)
if v < r.accept_zone as $unsigned {
// and return it, with some adjustments
return (w(r.low) + w((v % r.range as $unsigned) as $ty)).0;
}
}
}
}
}
}
integer_impl! { i8, u8 }
integer_impl! { i16, u16 }
integer_impl! { i32, u32 }
integer_impl! { i64, u64 }
#[cfg(feature = "i128_support")]
integer_impl! { i128, u128 }
integer_impl! { isize, usize }
integer_impl! { u8, u8 }
integer_impl! { u16, u16 }
integer_impl! { u32, u32 }
integer_impl! { u64, u64 }
#[cfg(feature = "i128_support")]
integer_impl! { u128, u128 }
integer_impl! { usize, usize }
macro_rules! float_impl {
($ty:ty) => {
impl SampleRange for $ty {
fn construct_range(low: $ty, high: $ty) -> Range<$ty> {
Range {
low: low,
range: high - low,
accept_zone: 0.0 // unused
}
}
fn sample_range<R: Rng>(r: &Range<$ty>, rng: &mut R) -> $ty {
r.low + r.range * rng.gen::<$ty>()
}
}
}
}
float_impl! { f32 }
float_impl! { f64 }
#[cfg(test)]
mod tests {
use distributions::{Sample, IndependentSample};
use super::Range as Range;
#[should_panic]
#[test]
fn test_range_bad_limits_equal() {
Range::new(10, 10);
}
#[should_panic]
#[test]
fn test_range_bad_limits_flipped() {
Range::new(10, 5);
}
#[test]
fn test_integers() {
let mut rng = ::test::rng();
macro_rules! t {
($($ty:ident),*) => {{
$(
let v: &[($ty, $ty)] = &[(0, 10),
(10, 127),
(::core::$ty::MIN, ::core::$ty::MAX)];
for &(low, high) in v.iter() {
let mut sampler: Range<$ty> = Range::new(low, high);
for _ in 0..1000 {
let v = sampler.sample(&mut rng);
assert!(low <= v && v < high);
let v = sampler.ind_sample(&mut rng);
assert!(low <= v && v < high);
}
}
)*
}}
}
#[cfg(not(feature = "i128_support"))]
t!(i8, i16, i32, i64, isize,
u8, u16, u32, u64, usize);
#[cfg(feature = "i128_support")]
t!(i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize);
}
#[test]
fn test_floats() {
let mut rng = ::test::rng();
macro_rules! t {
($($ty:ty),*) => {{
$(
let v: &[($ty, $ty)] = &[(0.0, 100.0),
(-1e35, -1e25),
(1e-35, 1e-25),
(-1e35, 1e35)];
for &(low, high) in v.iter() {
let mut sampler: Range<$ty> = Range::new(low, high);
for _ in 0..1000 {
let v = sampler.sample(&mut rng);
assert!(low <= v && v < high);
let v = sampler.ind_sample(&mut rng);
assert!(low <= v && v < high);
}
}
)*
}}
}
t!(f32, f64)
}
}