1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

#[cfg(feature = "nightly")]
use std::sync::atomic::{AtomicU8, Ordering};
#[cfg(feature = "nightly")]
type U8 = u8;
#[cfg(not(feature = "nightly"))]
use stable::{AtomicU8, Ordering};
#[cfg(not(feature = "nightly"))]
type U8 = usize;
use std::time::{Duration, Instant};
use parking_lot_core::{self, ParkResult, UnparkResult, SpinWait, UnparkToken, DEFAULT_PARK_TOKEN};

// UnparkToken used to indicate that that the target thread should attempt to
// lock the mutex again as soon as it is unparked.
pub const TOKEN_NORMAL: UnparkToken = UnparkToken(0);

// UnparkToken used to indicate that the mutex is being handed off to the target
// thread directly without unlocking it.
pub const TOKEN_HANDOFF: UnparkToken = UnparkToken(1);

const LOCKED_BIT: U8 = 1;
const PARKED_BIT: U8 = 2;

pub struct RawMutex {
    state: AtomicU8,
}

impl RawMutex {
    #[cfg(feature = "nightly")]
    #[inline]
    pub const fn new() -> RawMutex {
        RawMutex { state: AtomicU8::new(0) }
    }
    #[cfg(not(feature = "nightly"))]
    #[inline]
    pub fn new() -> RawMutex {
        RawMutex { state: AtomicU8::new(0) }
    }

    #[inline]
    pub fn lock(&self) {
        if self.state
            .compare_exchange_weak(0, LOCKED_BIT, Ordering::Acquire, Ordering::Relaxed)
            .is_ok() {
            return;
        }
        self.lock_slow(None);
    }

    #[inline]
    pub fn try_lock_until(&self, timeout: Instant) -> bool {
        if self.state
            .compare_exchange_weak(0, LOCKED_BIT, Ordering::Acquire, Ordering::Relaxed)
            .is_ok() {
            return true;
        }
        self.lock_slow(Some(timeout))
    }

    #[inline]
    pub fn try_lock_for(&self, timeout: Duration) -> bool {
        if self.state
            .compare_exchange_weak(0, LOCKED_BIT, Ordering::Acquire, Ordering::Relaxed)
            .is_ok() {
            return true;
        }
        self.lock_slow(Some(Instant::now() + timeout))
    }

    #[inline]
    pub fn try_lock(&self) -> bool {
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            if state & LOCKED_BIT != 0 {
                return false;
            }
            match self.state.compare_exchange_weak(state,
                                                   state | LOCKED_BIT,
                                                   Ordering::Acquire,
                                                   Ordering::Relaxed) {
                Ok(_) => return true,
                Err(x) => state = x,
            }
        }
    }

    #[inline]
    pub fn unlock(&self, force_fair: bool) {
        if self.state
            .compare_exchange_weak(LOCKED_BIT, 0, Ordering::Release, Ordering::Relaxed)
            .is_ok() {
            return;
        }
        self.unlock_slow(force_fair);
    }

    // Used by Condvar when requeuing threads to us, must be called while
    // holding the queue lock.
    #[inline]
    pub fn mark_parked_if_locked(&self) -> bool {
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            if state & LOCKED_BIT == 0 {
                return false;
            }
            match self.state.compare_exchange_weak(state,
                                                   state | PARKED_BIT,
                                                   Ordering::Relaxed,
                                                   Ordering::Relaxed) {
                Ok(_) => return true,
                Err(x) => state = x,
            }
        }
    }

    // Used by Condvar when requeuing threads to us, must be called while
    // holding the queue lock.
    #[inline]
    pub fn mark_parked(&self) {
        self.state.fetch_or(PARKED_BIT, Ordering::Relaxed);
    }

    #[cold]
    #[inline(never)]
    fn lock_slow(&self, timeout: Option<Instant>) -> bool {
        let mut spinwait = SpinWait::new();
        let mut state = self.state.load(Ordering::Relaxed);
        loop {
            // Grab the lock if it isn't locked, even if there is a queue on it
            if state & LOCKED_BIT == 0 {
                match self.state
                    .compare_exchange_weak(state,
                                           state | LOCKED_BIT,
                                           Ordering::Acquire,
                                           Ordering::Relaxed) {
                    Ok(_) => return true,
                    Err(x) => state = x,
                }
                continue;
            }

            // If there is no queue, try spinning a few times
            if state & PARKED_BIT == 0 && spinwait.spin() {
                state = self.state.load(Ordering::Relaxed);
                continue;
            }

            // Set the parked bit
            if state & PARKED_BIT == 0 {
                if let Err(x) = self.state.compare_exchange_weak(state,
                                                                 state | PARKED_BIT,
                                                                 Ordering::Relaxed,
                                                                 Ordering::Relaxed) {
                    state = x;
                    continue;
                }
            }

            // Park our thread until we are woken up by an unlock
            unsafe {
                let addr = self as *const _ as usize;
                let validate = || self.state.load(Ordering::Relaxed) == LOCKED_BIT | PARKED_BIT;
                let before_sleep = || {};
                let timed_out = |_, was_last_thread| {
                    // Clear the parked bit if we were the last parked thread
                    if was_last_thread {
                        self.state.fetch_and(!PARKED_BIT, Ordering::Relaxed);
                    }
                };
                match parking_lot_core::park(addr,
                                             validate,
                                             before_sleep,
                                             timed_out,
                                             DEFAULT_PARK_TOKEN,
                                             timeout) {
                    // The thread that unparked us passed the lock on to us
                    // directly without unlocking it.
                    ParkResult::Unparked(TOKEN_HANDOFF) => return true,

                    // We were unparked normally, try acquiring the lock again
                    ParkResult::Unparked(_) => (),

                    // The validation function failed, try locking again
                    ParkResult::Invalid => (),

                    // Timeout expired
                    ParkResult::TimedOut => return false,
                }
            }

            // Loop back and try locking again
            spinwait.reset();
            state = self.state.load(Ordering::Relaxed);
        }
    }

    #[cold]
    #[inline(never)]
    fn unlock_slow(&self, force_fair: bool) {
        // Unlock directly if there are no parked threads
        if self.state
            .compare_exchange(LOCKED_BIT, 0, Ordering::Release, Ordering::Relaxed)
            .is_ok() {
            return;
        }

        // Unpark one thread and leave the parked bit set if there might
        // still be parked threads on this address.
        unsafe {
            let addr = self as *const _ as usize;
            let callback = |result: UnparkResult| {
                // If we are using a fair unlock then we should keep the
                // mutex locked and hand it off to the unparked thread.
                if result.unparked_threads != 0 && (force_fair || result.be_fair) {
                    // Clear the parked bit if there are no more parked
                    // threads.
                    if !result.have_more_threads {
                        self.state.store(LOCKED_BIT, Ordering::Relaxed);
                    }
                    return TOKEN_HANDOFF;
                }

                // Clear the locked bit, and the parked bit as well if there
                // are no more parked threads.
                if result.have_more_threads {
                    self.state.store(PARKED_BIT, Ordering::Release);
                } else {
                    self.state.store(0, Ordering::Release);
                }
                TOKEN_NORMAL
            };
            parking_lot_core::unpark_one(addr, callback);
        }
    }
}